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Abstract

A hybrid numerical scheme designed for hypersonic non-equilibrium flows is presented which solves the Navier–Stokes
equations in regions of near-equilibrium and uses the direct simulation Monte Carlo method where the flow is in non-equi-
librium. Detailed analysis of each stage of the hybrid cycle illustrates the difficulty in defining physically correct DSMC
boundary conditions in regards to both macroscopic state and velocity distribution. However, results also show that
DSMC boundary conditions have little effect on a previously initialized interior particle domain. A sub-relaxation tech-
nique capable of determining macroscopic, hydrodynamic properties in a DSMC simulation is used to determine low-
scatter boundary conditions for the NS domain. Particle and continuum domains adapt during the hybrid simulation
through application of a continuum breakdown parameter based on the gradient-length Knudsen number. The hybrid
code reproduces experimental results and full DSMC simulations in half the time for a large range of 1D shock waves
in argon and diatomic nitrogen gas.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Computation of the aerothermodynamics of hypersonic re-entry vehicles along their entire trajectory in-
volves continuum conditions at low altitudes and rarefied, or non-equilibrium, conditions at high altitudes.
Well-established simulation methods already exist for each of these flow regimes. For example, the continuum
Navier–Stokes (NS) equations may be solved using algorithms from Computational Fluid Dynamics (CFD)
and the particle based direct simulation Monte Carlo method (DSMC) may be used for the non-equilibrium
flows. A hybrid method that blends the CFD and DSMC techniques is an attractive approach for simulation
of flows involving a mixture of both continuum and non-equilibrium flow regimes. This is the situation at
intermediate altitudes where within a mostly continuum flow, there may be local regions of non-equilibrium
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flow generated by both the rapid expansion behind a re-entering capsule as well as by strong gradients in shock
waves and boundary layers.

For dilute gases, such as the earth�s atmosphere, the most popular numerical method for simulating
non-equilibrium flow is the DSMC method developed by Bird [1]. Here, the trajectories of a large number of
simulated particles are followed simultaneously through a grid of computational cells. For each iteration, par-
ticles are first moved along their trajectories without colliding, after which particles residing within the same
cell are randomly selected for a collision process. A major limitation of DSMC is that in order for this collision
process to be physically accurate, the cell size must be on the order of the mean free path (k) while containing
at least 20 simulated particles per cell [1]. As a result, 2D and 3D DSMC simulations can require prohibitively
high numbers of computational cells and therefore simulated particles, especially in regions where k is very
small. However, it is precisely in these regions where the continuum approximation is valid and the NS equa-
tions can be solved without the same restriction on cell size. This is the motivation behind developing a hybrid
CFD-DSMC numerical scheme for hypersonic non-equilibrium flows.

2. Hybrid scheme considerations

Two major problems that must be addressed in such a hybrid scheme include the details of how particle and
continuum regions transmit information across their interface and determining where this interface should be
placed. Typically, particle and continuum regions are determined by applying a continuum breakdown param-
eter to the flow field. This study uses the gradient-length Knudsen number
KnGL Q ¼
k

Qfree-stream

jrQj; ð1Þ
where Q represents the parameter of interest, such as density (q), velocity (V), or temperature (T). The actual
continuum breakdown parameter is then the maximum of these, that is:
KnGL ¼ maxðKnGL q;KnGL V ;KnGL T Þ. ð2Þ

It has been shown for flows representative of hypersonic re-entry problems [2], that in regions of the flow field
where KnGL < 0.05, the discrepancy between a NS and DSMC solution is less than 5%. Thus, these regions
could be solved using a continuum solver with little error.

The transfer of information between particle and continuum domains is typically handled using one of the
two methods depicted in Fig. 1. Flux-based coupling, Fig. 1(a), involves calculating the fluxes of mass,
momentum, and energy at the interface according to the particle cell (FP), and according to the continuum
cell (FC). FP is calculated by tracking individual simulation particles as they cross the interface whereas FC

is extrapolated using macroscopic gradients in the continuum domain; a standard procedure in a continuum
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Fig. 1. Typical hybrid coupling procedures.
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solver. However, in general FP 6¼ FC and a modified flux must somehow be calculated such that the transfer of
information across the interface remains conservative. This is analogous to the conservative flux functions
used widely in pure continuum solvers. The modified flux is not only used to update the continuum solution,
but is also used to create a distribution of particles on the interface which are then allowed to propagate into
the particle simulation. State-based coupling, Fig. 1(b), temporarily averages particle information to obtain a
macroscopic state on one side of the interface and at the same time generates a distribution of particles from a
macroscopic state on the other side of the interface. In this way, the flux into both the continuum domain and
particle domain is handled exclusively by its respective solver and is thus inherently conservative. In regards to
the frequency of information transfer, a ‘‘decoupled’’ hybrid simulation will refer to a simulation in which
both particle and continuum domains are solved to steady-state before transferring information across their
interface. A ‘‘loosely’’ coupled approach increases the frequency of information exchange, whereas a ‘‘strongly’’
coupled approach exchanges information at every time-step. With respect to the averaging of particle infor-
mation, the statistical scatter involved in determining FP in Fig. 1(a) is much higher than that associated with
averaging particle information to obtain a macroscopic state as seen in Fig. 1(b). In fact the statistical error in
the flux quantities can be shown [3] to scale as
Eflux �
Estate

Kn
; ð3Þ
where Kn is the Knudsen number which at the interface (near-equilibrium conditions) will typically be close to
0.01. The error in such an average is also known to scale with the inverse square-root of the number of sam-
ples. This implies that the number of samples required to reduce Eflux � Estate will scale as 1/Kn2; a significant
disadvantage of flux-based coupling.

In order to reduce the statistical scatter when averaging DSMC particle information, Wang and Boyd used
the Information Preservation (IP) scheme [4] which preserves microscopic and macroscopic information for
each DSMC simulation particle. Statistical scatter was then eliminated by using state-based coupling and aver-
aging over the IP-particle information. Although successful for certain 2D flows [5], when applied to 1D nor-
mal shock waves, it was found that the IP scheme produced an incorrect post-shock state and a shock wave
that was too thin. A new formulation for the IP energy flux [6] was able to remedy these problems somewhat,
however, at large computational expense.

Other researchers have attempted to directly couple a continuum solver to a particle solver. Ref. [7] presents
a discussion of hybrid method considerations as well as a summary of published work on such hybrid schemes.
For example, Hash and Hassan present both a decoupled DSMC-NS hybrid simulation of a hypersonic
blunted cone [8] and a loosely coupled simulation of Couette flow [9] using flux-based coupling. For the study
of Couette flow, the authors analyze different conservative hybrid flux formulations, concluding that use of the
Marshak condition [10] is most accurate and efficient. These studies also maintain a fixed particle continuum
interface set by a conservative value of KnGL = 0.005. Wadsworth and Erwin developed a strongly coupled,
flux-based, hybrid DSMC-NS scheme and applied it to both 1D shocks [11] and 2D rarefied slit flow [12].
In these studies, a Maxwellian distribution was used to generate simulation particles at the interface and
the domain boundaries remained fixed. Other studies have been carried out where the domain boundaries
are re-evaluated during the simulation. Le Tallec and Mallinger use criterion based on the residual of the Grad
13-moment equations to adaptively position the interface and applied their scheme to 2D flow around an
ellipse and a flat plate [13]. Roveda et al. strongly couple the Euler equations with DSMC for time-accurate
moving 1D shock waves [14] and 2D unsteady slit flow [15]. Since the Euler equations are used, a Maxwellian
distribution is sampled to generate simulation particles at the interface. The authors employ state-based cou-
pling and effectively ‘‘clone’’ particles near the interface in order to reduce the statistical scatter transferred to
the continuum domain. Finally, the domains are adaptively defined by first applying a smoothing function to
the DSMC domain and then calculating continuum breakdown using a low value of KnGL = 0.005. Quite
recently, a sophisticated 3D hybrid DSMC-Euler scheme has been proposed which uses flux-based coupling
and embeds the particle solver in the finest level of an adaptive mesh and algorithmic refinement (AMAR)
scheme [16]. In addition to these hybrid methods which attempt to couple standard CFD and DSMC methods,
other researchers have developed new, single, methods designed to work over a large Knudsen number range.
For example, Pareschi and Caflisch formulate a Time Relaxed Monte Carlo (TRMC) method and apply it to a
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space homogeneous case [17]. Computational complexity and statistical variance are reduced because fewer
particles are used to represent the solution, the remainder of which is represented by a continuous Maxwellian
distribution. As equilibrium is approached, more and more of the solution is represented by the continuous
Maxwellian and the method essentially becomes an Euler solver in this limit.

This paper analyzes in detail, each step in a hybrid cycle designed for steady-state hypersonic flows. Focus-
ing on steady-state solutions allows for temporal averaging, which will be shown in upcoming sections to effec-
tively control statistical fluctuations. The hybrid scheme strongly couples existing NS and DSMC solvers. The
interface locations are adapted during the simulation based on the published recommendation [2] of
KnGL = 0.05. State-based coupling takes advantage of the existing boundary procedures of both solvers to
handle information transfer while introducing less statistical scatter than a flux-based scheme. The hybrid
scheme is applied to 1D normal shock waves in argon and diatomic nitrogen gas. First, the magnitude of sta-
tistical scatter is analyzed as well as the accuracy of the velocity distributions generated at the interface and
their effect on the particle domain. This information is then used to implement a simple, robust and efficient
hybrid code. The code is tested for shock Mach numbers ranging from 1.5 to 10 where the user is required to
change only the gas properties and free-stream conditions. The results are compared with experimental data
and the hybrid code is profiled to analyze its numerical efficiency.

3. Numerical models

The hybrid CFD-DSMC numerical scheme studied in this paper, divides the flow field into continuum
regions, where the CFD method is used, and particle regions where the DSMC method is used. This hybrid
scheme uses standard CFD and DSMC solvers that have been extensively researched and validated in the lit-
erature. The major challenge that this research addresses is how to couple a probabilistic particle solver to a
deterministic continuum solver. The CFD code solves the two-dimensional, laminar, Navier–Stokes equations
using an explicit, second-order, finite volume algorithm. The inviscid fluxes are calculated using modified Steger–
Warming flux-vector splitting [18] and the viscous derivatives are calculated using centered differencing. The
particle regions are solved using MONACO [19], a general, cell-based implementation of the DSMC method
which statistically simulates the Boltzmann equation. The viscosity model used in the NS solver is
l ¼ lref

T
T ref

� �0:75

; ð4Þ
where lref = 2.13 · 10�5 and 1.67 · 10�5 N s/m2 are the reference viscosities of argon and nitrogen respec-
tively, at Tref = 273 K. The parameters used in the DSMC collision model (variable hard-sphere) are consis-
tent with this viscosity model. For diatomic nitrogen, MONACO employs the variable rotational energy
exchange probability model of Boyd [20] where the reference temperature for rotational energy exchange is
specified as 91.5 K and the maximum rotational collision number as 18.1. Energy transfer to vibrational
modes is not considered. In this study, the hybrid code is applied to one-dimensional normal shock waves
in argon and diatomic nitrogen gas. Results are compared with an existing data-set of detailed experimental
measurements for these flows obtained by Alsmeyer [21]. Measurements were made using an electron beam
absorption technique and consist of density profiles over a range of shock Mach numbers. The grid employed
for all hybrid, full DSMC and full NS simulations presented in this paper has 400 uniform cells in the flow
direction and five cells in the transverse direction. Although computed on a 2D grid, the resulting flow fields
are strictly 1D and are only presented for the middle (3rd) row of cells. The grid spans approximately 40 up-
stream mean free paths, specified by Alsmeyer as k = 1.098 · 10�3 m. The free-stream conditions are
T1 = 300 K and the number density n1 = 1.6095 · 1021 particles/m3. This results in free-stream density values
of q1 = 1.069 · 10�4 kg/m3 and q1 = 7.480 · 10�5 kg/m3 for argon and nitrogen, respectively. The velocity is
then adjusted to achieve the desired flow Mach number. The simulation particle weight, equal to the ratio of
real to simulated particles, is set to 5.0 · 1019 for all simulations in this study. This results in the number of
simulation particles per cell ranging from 30 upstream of the shock to 50–100 downstream of the shock for
Mach numbers ranging from 1.55 to 10, respectively. The DSMC time-step, DtDSMC is specified such
that V free-stream � DtDSMC ¼ 1

5
Dx, and the NS time-step is matched to this value. To maintain consistency

for efficiency comparisons, a full DSMC simulation begins with particles initialized by a Chapman–Enskog
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distribution based on a NS solution, similar to the initial particle regions in a hybrid simulation. The full
DSMC simulation is considered to have reached steady-state when the total number of simulation particles
no longer varies appreciably. In contrast, a hybrid simulation is considered to have reached steady state only
after the interfaces have adapted to their final positions and the total number of particles has reached steady
state. In order to obtain the same level of statistical scatter in the final solutions, both full DSMC and hybrid
simulations are then sampled for 3000 time-steps after reaching steady state.

4. Accuracy of DSMC boundary conditions

The procedure for imposing boundary conditions on the DSMC domain was depicted earlier in Fig. 1(b).
For each time-step, all simulation particles in these boundary cells are first deleted and then re-generated based
on current NS information. The number of new particles is determined directly from the NS cell density and
are randomly distributed within the DSMC boundary cell volume. The velocities of these newly generated
particles are sampled from a Chapman–Enskog distribution [22] based on the local macroscopic state and gradi-
ent, known from the NS solver. The boundary cells then become an extension of the DSMC domain for one
standard DSMC cycle.

As previously mentioned, one of the important tasks in a hybrid scheme is determining in what regions a
particle formulation is necessary. The current hybrid implementation begins with a full NS solution and
applies the breakdown parameter (Eq. (2)) to determine the initial particle and continuum domains. Particles
are then generated in all cells of the particle domain using the Chapman–Enskog distribution, based on this
initial NS solution. It is well known that the NS equations predict a shock that is too thin. As shown in
Fig. 2(a), even the application of a very conservative breakdown parameter may result in the initial DSMC
domain being too narrow. Focusing only on the DSMC region in Fig. 2(a), the hybrid simulation will begin
with an incorrect DSMC solution that is enclosed by boundary cells fixed at a physically incorrect state. This
raises a fundamental question, namely, how will the DSMC solution respond to such ill-posed boundary
conditions?

To answer this question, for a Mach 5 shock wave in argon gas, three DSMC domains are determined by
applying three values of the continuum breakdown parameter, KnGL = 0.01, 0.1 and 1.0. This results in initial
DSMC domains that are too narrow, where hybrid interfaces now lie inside the physically correct shock pro-
file as seen in Fig. 2(a). The DSMC solver is then run until the solution no longer varies noticeably (�5000
time-steps) while keeping the boundary conditions fixed. The resulting macroscopic velocity profiles in the nar-
row DSMC computational domains are shown in Fig. 2(b). It is clear that although the boundary conditions
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are fixed on the incorrect NS solution, the entire DSMC solution (including the cells immediately adjacent to
the incorrect boundary cells) proceed towards the correct solution. Thus, these ill-posed boundary conditions
seem to have little effect on the interior domain. This may be a result of the fact that relatively few simulation
particles enter via the boundary cells compared to the vast majority of particles that were initially created to
fill the interior of the DSMC domain. This behavior, verified to be independent of grid density and Mach
number, is an important aspect of the hybrid cycle. Clearly, if interior cells were strongly influenced by these
ill-posed boundary conditions then this incorrect state would be reflected back into the NS domain. A further
way to reduce this problem would be to generate the NS boundary condition from a DSMC cell located
slightly inside the interface as opposed to the cell immediately touching the interface. Such a ‘‘buffer’’ would
not allow any local effects of ill-posed DSMC boundary conditions to be transferred back into the continuum
domain.

Ultimately, a DSMC simulation requires boundary cells not only representing the correct macroscopic
state, but whose particles represent the physically correct velocity distribution at that location in the flow
field. Most DSMC simulations apply boundary conditions in uniform flow regions where a Maxwellian
distribution is physically correct. A hybrid scheme attempts to place boundary conditions in regions of
near-equilibrium flow and therefore requires at least a Chapman–Enskog velocity distribution. However,
even if the DSMC boundary cells are successfully set to the correct macroscopic state, the generated
Chapman–Enskog distribution is not necessarily the correct velocity distribution. This situation is por-
trayed in Fig. 3 where the flow gradient used to generate the distribution comes from the NS solution,
which in this case has a much steeper gradient than the true physical gradient at that point in the shock
wave. Fig. 4 shows the true velocity distribution (calculated from a full DSMC simulation) as well as the
Chapman–Enskog distributions generated using the steep NS gradient and the true physical gradient for
both pre and post-shock interfaces. These plots are a result of the Mach 5 simulation using KnGL = 0.01,
whose interface locations can be seen from Fig. 2(b). The post-shock interface (see Fig. 4(a)) is seen to be
in a region of near-equilibrium and thus all distributions agree well. However, at the pre-shock interface
(see Fig. 4(b)), the Chapman–Enskog distribution based on the NS state and gradient is a very poor
DSMC boundary condition. Even if this distribution is generated using the true physical gradient (which
is unknown during the simulation), it still does not reproduce the true distribution. Therefore, until the
interfaces are correctly located in regions of near-equilibrium, the DSMC boundary conditions may con-
tain both an un-physical state and velocity distribution. Fortunately, these ill-posed boundary conditions
were shown not to have a large influence on the interior DSMC solution.
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Fig. 3. Generation of velocity distributions in boundary cells.
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5. Reducing scatter in NS boundary conditions

Now that it has been determined that despite initially, ill-posed boundary conditions, the DSMC region
evolves towards the correct solution in time, this information must be transferred into the continuum domain.
For example, Fig. 2(b) shows the variation in macroscopic velocity calculated in the DSMC region for a Mach
5 shock wave with boundaries set using KnGL = 0.01. As suggested at the end of the previous section, a small
overlap region is created such that the NS boundary cell is placed 5 cells inside the interface. Fig. 2(b) shows
that in the pre-shock NS boundary cell, the velocity decreases from 1614 to 1550 m/s (roughly 4%) during
approximately 5000 DSMC time-steps. It is desirable to represent this changing DSMC information as a time
varying NS boundary condition. As depicted earlier in Fig. 1, this is achieved by averaging over all particles in
a DSMC cell to obtain macroscopic properties at each time-step. Figs. 5 and 6 display the success of various
averaging procedures in the pre-shock NS boundary cell compared to the raw DSMC data for velocity and
temperature, respectively. Here the raw DSMC velocity is simply the average of all particle velocities in the
boundary cell at a given time-step. Clearly, this simple spatial average is subject to large statistical fluctuations
which completely overwhelm the physical variation of both velocity and temperature. In the pre-shock NS
DSMC Iterations

V
x 

/ V
x

o

0 1000 2000 3000 4000 5000
0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

1.01

1.02

1.03

1.04

1.05

Cumulative Average
θ = 0.001
θ = 0.01
Raw DSM CData

NS Boundary Condition

Fig. 5. Reduction of DSMC velocity scatter for NS boundary condition.



DSMC Iterations

T
 / 

T o

0 1000 2000 3000 4000 5000

1

1.5

2

2.5

3

Cumulative Average
θ = 0.001
θ = 0.01
Raw DSMC Data

NS Boundary Condition

Fig. 6. Reduction of DSMC temperature scatter for NS boundary condition.

T.E. Schwartzentruber, I.D. Boyd / Journal of Computational Physics 215 (2006) 402–416 409
boundary cell, the velocity fluctuates by as much as 8%, and the temperature fluctuates by as much as 100%.
Although not shown, the statistical variations in density, velocity and temperature in the post-shock NS
boundary cell are roughly 30%, 50% and 20%, respectively. The macroscopic temperature in a DSMC cell
at a given time-step (the raw data) is calculated by
T ¼ m
3k
hV 2

x þ V 2
y þ V 2

z i � hV xi2 � hV yi2 � hV zi2
� �

; ð5Þ
where k is the Boltzmann constant and m is the mass of the particle. It has been observed that sampling from a
small number of DSMC particles (less than 100) consistently depresses the value of the translational temper-
ature. Roveda et al. [14] correct for this, however, in the current simulations this discrepancy is less than 2%
and Eq. (5) is used exclusively. Figs. 5 and 6 also plot the cumulative time-average of the raw DSMC data. The
inclusion of the history of the flow properties is seen to reduce the scatter almost completely while at the same
time introducing a time lag. Recently, a method for evaluating instantaneous macroscopic hydrodynamic
properties from a DSMC simulation has been proposed. The sub-relaxation technique by Sun and Boyd
[23] includes the cumulative history using a relaxation factor and in addition, allows for ‘‘old history’’ to
be removed from the average when it begins to pollute, or lag, the true variation. The sub-relaxation formula
for the temporal average �Aj is:
Aj ¼ ð1� hÞAj�1 þ hAj ð6Þ

and the correction, which removes the ‘‘old history’’ is given by:
Aj
0 ¼ Aj þ

ð1� hÞj�i

1� ð1� hÞj�i Aj � Ai
0

� �
; ð7Þ
where j is the current time-step, i is the previous time-step at which a correction was made, and Ai
0

is the tem-
poral average recorded at this previous time-step i. As detailed in Ref. [23], Eq. (7) effectively removes the his-
tory before time-step i. In order to maintain stability, this correction is performed only when the coefficient of
this correction is between zero and one. This condition is approximately satisfied when j ¼ 1

hþ i. Note that the
amount of scatter associated with a given h value is the same as the scatter resulting from averaging over 1

h
time-steps [23]. Figs. 5 and 6 show the success of this averaging technique applied to the DSMC velocity
and temperature variations, respectively. Although when using h = 0.01 the average follows the DSMC var-
iation with almost no lag, the scatter is far too large to use this average as a NS boundary condition. Clearly,
large scatter in a NS boundary condition will induce large numerical waves in the continuum domain which
will likely cause instability and failure of the hybrid code. However, a time lag is more acceptable, considering
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this hybrid code is being developed for steady-state flows. By decreasing h to 0.001, the scatter is reduced sig-
nificantly with an acceptable lag. Notice that the sub-relaxation technique reaches the steady state value at
approximately 2500 time-steps while the cumulative average still has not reached it at 5000 time-steps. Addi-
tionally, in contrast to the cumulative average, the sub-relaxation average behaves smoothly at early time-
steps since only a small weight of h is applied to each successive raw DSMC measurement. For these reasons,
the sub-relaxation technique will be used in the current hybrid code to determine the NS boundary condition
at every DSMC time-step, using a value of h = 0.001.

6. Proposed hybrid cycle

In previous sections, the methods used to obtain boundary conditions for both the NS and DSMC domains
were outlined. The NS boundary condition is able to follow a changing DSMC solution with manageable lag
and low scatter. The DSMC boundary condition was shown to be valid only in regions of near-equilibrium
flow and thus it is desirable to locate the proper interface location quickly. Note however, results also con-
cluded that the DSMC boundary condition has little effect on the interior DSMC solution. This section will
implement all of the above results and recommendations into a strongly coupled hybrid cycle. The proposed
hybrid cycle involves the following steps:

(1) Obtain an initial solution to the NS equations.
(2) Generate DSMC/NS domains by applying the KnGL continuum breakdown parameter to NS regions

only (initially, the entire hybrid domain is a NS region). Generate new simulation particles as needed
using the Chapman–Enskog velocity distribution.

(3) Create particles in the DSMC boundary cells from the current NS solution using the Chapman–Enskog
velocity distribution.

(4) Advance the DSMC domain by one time-step, DtDSMC.
(5) Set the NS boundary conditions using the sub-relaxation technique applied to the updated DSMC

particles.
(6) Advance the NS domain in time by DtDSMC.
(7) Return to step (3) -OR- Every NBr time-steps, return to step (2)
(8) If step (2) no longer modifies the DSMC/NS domains, then fix the domains. Begin cumulative DSMC

sampling and now generate the NS boundary condition based on this cumulative average. Repeat steps
(3) to (6) until the degree of scatter in the DSMC solution, and the NS residual, fall below threshold
values.

Fig. 7 exhibits how this hybrid cycle proceeds to solve a Mach 6.5 shock wave. In order to clearly visualize
the progression of the hybrid solution, the breakdown parameter is applied only every NBr = 2000 time-steps
and the recommended [2] value of KnGL = 0.05 is used. All variables are normalized as,
qn ¼
q� q1

q2 � q1

; Vxn ¼
Vx� Vx2

Vx1 � Vx2

; T n ¼
T � T 1

T 2 � T 1

ð8Þ
with the spatial dimension normalized by the mean free path of the gas upstream of the shock. Only temper-
ature profiles are presented, as they involve the largest variations in both the DSMC and NS solutions, espe-
cially upstream of the shock wave. Initially, the entire hybrid solution is a NS domain set to a NS solution of
the shock wave problem. Immediately, the breakdown parameter is applied resulting in the initial DSMC and
NS domains depicted by vertical lines in Fig. 7(a). Here, the hybrid solver has already cycled for 2000 time-
steps and as a result, the hybrid DSMC solution has moved significantly towards the full DSMC solution.
Recall, this important behavior was observed previously in Fig. 2(b). The hybrid NS solution is seen to have
followed this changing DSMC solution smoothly with some lag. In fact, for the first 2000 time-steps, the exact
NS boundary condition in the pre-shock region was shown previously in Fig. 6. The breakdown parameter is
then applied to the hybrid NS portion of the solution seen in Fig. 7(a). Since the gradient in the NS region has
now been extended further in each direction, the new DSMC domain (shown in Fig. 7(b)) is now larger. Here,
the hybrid solver has cycled for another 2000 time-steps with its new domains and the DSMC solution has
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Fig. 7. Progression of a hybrid simulation for a Mach 6.5 shock. (a) After 2000 time-steps. (b) After 4000 time-steps. (c) Final hybrid
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progressed even further towards the correct solution. The DSMC domain continues to expand every 2000
time-steps, until at 22,000 time-steps application of the breakdown parameter no longer results in a change
in the DSMC or NS domain size. This signifies that the DSMC solution is no longer changing in time and
has thus reached steady state. At this point the domain sizes are fixed and cumulative DSMC sampling begins
in order to reduce the scatter in the hybrid DSMC solution to an arbitrarily low value. Since the DSMC solu-
tion is now in steady-state, the sub-relaxation averaging is abandoned and the NS boundary condition is set
using the cumulative DSMC average. The hybrid cycle is run for 3000 more time-steps with the finalized inter-
faces in order to reduce the scatter in the final solution which is shown in Fig. 7(c). Clearly the hybrid solution
reproduces exactly the full DSMC solution. Notice that the DSMC portion of the solution transitions very
smoothly to the NS portion and that the two solutions agree very well in the buffer region. This signifies that
the choice of KnGL = 0.05 does in fact place the interface in a region of near-equilibrium that can be modeled
successfully with the NS equations.

The actual boundary condition seen by the pre-shock NS solution is plotted in Fig. 7(d). Although some of
the variations are quite large, they occur over a large number of time-steps. Since the NS boundary condition
is updated at every DSMC time-step (strongly coupled), these large variations present no problem to the NS



412 T.E. Schwartzentruber, I.D. Boyd / Journal of Computational Physics 215 (2006) 402–416
solver. It should be noted that the discontinuous variations (every 2000 time-steps) do not occur in the same

NS cell. Recall that every 2000 time-steps, the interfaces and thus the NS boundary cells are relocated. Clearly,
there is still scatter present in the NS boundary condition, but its magnitude is far less than the scatter in the
raw DSMC data presented in the previous section. This low scatter can be completely eliminated by switching
to cumulative DSMC sampling after the final domains are established (in this case after 22,000 time-steps).

7. 1D normal shock results for Argon and Nitrogen

In the previous section the number of time-steps between application of the breakdown parameter was set
at a large value, NBr = 2000, in order to clearly demonstrate the stages involved in the hybrid cycle. However,
one of the previous conclusions drawn is that the correct interfaces should be established as quickly as pos-
sible. This may be achieved by applying the breakdown parameter more often. However, NBr must remain
large enough to allow the DSMC solution to change before the breakdown parameter is applied again, other-
wise this would waste computational time. For all cases presented in this section, an optimal value of
NBr = 500 time-steps was determined to find the correct interfaces in the least amount of time. In fact, on aver-
age, the final interfaces are located in 4000 time-steps. It is very important to note that this is approximately
the same number of time-steps (only slightly more) that a full DSMC simulation requires to reach steady state.
Thus, for these cases, the correct interfaces are effectively determined while the DSMC portion is proceeding
towards steady state. The remaining hybrid cycle parameters are the same for every case and have already
been given above. Using these parameters, the hybrid code is able to produce all of the results in this section
by simply changing the gas properties and free-stream velocity.

All hybrid results will be compared with full DSMC simulations, full NS solutions and with experimental
data from Alsmeyer [21]. Alsmeyer collected detailed density profiles inside shock waves at various Mach
numbers between 1.2 and 9.0. Figs. 8(a),(b) and (c), (d) show the hybrid results in argon gas for Mach numbers
of 3.38 and 9.0, respectively. Fig. 8(a) shows the density profiles calculated from full DSMC, full NS and
hybrid solvers compared with experimental data for a Mach number of 3.38. Fig. 8(b) depicts profiles of
the normalized density gradient for the various methods. The gradient at qn = 0.5 is also referred to as the
reciprocal shock thickness and will be used later. For this case, both Figs. 8(a) and (b) verify that the hybrid
solution reproduces exactly the full DSMC solution. Additionally, the full DSMC solution is seen to accu-
rately predict the experimental results. Similarly, the results for the Mach 9.0 case, depicted in Figs. 8(c)
and (d), show the hybrid solution reproducing exactly the full DSMC solution which again agrees very well
with experimental data. For this high Mach number case, the final DSMC domain is very large. In fact,
the final interfaces extend beyond any significant density gradient (especially upstream of the shock). The rea-
son for this is that the temperature gradient is known to precede the density gradient in high-speed shock
waves. Although Alsmeyer did not measure temperature, this phenomenon was seen earlier in Fig. 7(c). Since
the breakdown parameter detects the maximum of density, velocity and temperature gradients (see Eq. (2)),
the temperature gradient seen in Fig. 7(c) will push the interface upstream. Similar results are presented for
nitrogen simulations at shock Mach numbers of 2.0 and 6.1 in Figs. 8(e) and (f), respectively. For the nitrogen
cases, full DSMC and full NS results are not plotted, however for Mach numbers ranging from 1.5 to 10.0, the
hybrid results are verified to match full DSMC solutions and result again in thicker shock waves than those
obtained by full NS solutions. Experimental results exist only for the density profiles and the hybrid results
(solid line) shown in Figs. 8(e) and 8(f) agree well with these experimental measurements. Since nitrogen is
a diatomic molecule, the DSMC region now contains both a translational temperature (TTRA) and a rota-
tional temperature (TROT). No vibrational degrees of freedom are included in the DSMC simulations. It is
interesting to note that at the interfaces the gas is close to thermal equilibrium, that is, there is only a small
difference between TTRA and TROT. Thus although KnGL does not directly account for thermal non-equilib-
rium, it still positions the interfaces in regions quite close to thermal equilibrium. However, the gas is not
exactly in thermal equilibrium and future simulations may either reduce the continuum cutoff parameter below
KnGL = 0.05 or possibly incorporate thermal non-equilibrium into the definition of continuum breakdown.

Full NS, DSMC and hybrid simulations were run for 13 Mach numbers between 1.2 and 10. The reciprocal
shock thickness predicted by these methods for argon gas was calculated and compiled into one graph for
comparison with experimental data over the entire Mach number range. This result is shown in Fig. 9(a).
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Clearly, the NS solver predicts a shock wave that is far too thin, while the DSMC solver, using the viscosity
law in Eq. (4), agrees with the experimental results very well. In addition, the hybrid solver is seen to reproduce
the DSMC results almost exactly for each Mach number. Finally, it should be noted how all three solvers
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predict the same reciprocal shock thickness when the Mach number is small. In fact, for a Mach 1.244 case,
application of the continuum breakdown parameter on the initial NS solution results in no DSMC domain at
all. Thus, the hybrid solver immediately returns the full NS solution as the final solution. The NS solution for
this case does indeed agree both with experiment and a full DSMC simulation and thus lends further support
for using KnGL = 0.05 as the cutoff for continuum breakdown.

Computational profiling of the hybrid code reveals an average speed-up factor of 2 compared with a full
DSMC simulation for 1D shock waves in argon. Clearly, both the size of the overall hybrid domain as well
as the average number of particles per DSMC cell will greatly influence the efficiency of the hybrid code and
are indeed chosen somewhat arbitrarily for this study. The efficiency comparisons are thus only included for
completeness and cannot be readily extended to other physical problems or multi-dimensional simulations.
Having said this, Fig. 9(b) displays the increase in efficiency gained by the hybrid code for this study. It is
evident that as the Mach number increases, the density in the post-shock region increases as well. Since, on aver-
age, there are now more particles per DSMC cell, the ratio of time spent by the DSMC solver for one cell to
that spent by the NS solver increases with Mach number. For this reason, the hybrid solver would be expected
to increase in efficiency as Mach number increased. However, at the same time, the hybrid particle domain gets
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larger as Mach number increases. This reduces the efficiency of the hybrid solver as fewer cells may be simu-
lated as continuum cells. The overall result is that the efficiency degrades only slightly as Mach number
increases and a full DSMC simulation remains roughly 2 times slower than a hybrid simulation. According
to the profiling, the DSMC solver takes only 3–4 times longer per cell than the NS solver. Thus, even if
the entire domain could be represented as continuum cells, the maximum speed-up would be a factor of 3–
4 times. It is very important to realize, however, that the increase in efficiency gained by a hybrid solver ulti-
mately comes from simulating far fewer total cells. In this study, the continuum mesh maintained the same
density as the particle mesh for simplicity. The true advantage of a hybrid code, as mentioned in the introduc-
tion, is that the continuum mesh is able to be far coarser than the particle mesh. In multiple dimensions such a
large decrease in the number of cells simulated will result in much larger computational savings. Although this
research strongly couples an explicit NS solver to the DSMC method, future research will investigate the ben-
efits of using an implicit NS solver. This will enable significant time-scale decoupling (discussed in Ref. [7]) and
therefore allow the continuum cells to be updated far less frequently than the particle cells. The combination
of simulating fewer cells for fewer time-steps in large continuum portions of the flow field is expected to greatly
increase the computational efficiency of such a hybrid scheme.
8. Conclusions

This study presented a detailed analysis of each stage of a hybrid numerical scheme which strongly couples
a NS solver to a DSMC solver in order to efficiently model high speed non-equilibrium flows. During the
hybrid simulation, due to the inherent difficulty in determining physically valid particle and continuum regions
without having access to the final physical solution, the state represented in DSMC boundary cells may be un-
physical. In addition, before the interface adapts to a region of near-equilibrium, the velocity distribution in
the DSMC boundary cell may be un-physical as well. However, detailed analysis showed that this boundary
condition has only a small effect on the interior of the DSMC domain when it has been initialized with
particles that correspond to a macroscopic NS solution. Also, including a small overlap or ‘‘buffer’’ region to
separate DSMC and NS boundary cells reduced the effect of ill-posed DSMC boundary conditions and inhib-
ited the reflection of this error back into the NS domain. For such steady-state problems, state-based coupling
using a sub-relaxation technique to include recent history was found to be an efficient method of controlling
statistical scatter when generating NS boundary conditions from particle information. Using a continuum
breakdown parameter of KnGL = 0.05 resulted in less than a 5% discrepancy between continuum and particle
solutions; thus re-enforcing previous results. A hybrid code based on these findings was able to reproduce
experimental and full DSMC simulation results in half the time for 1D argon and nitrogen shock waves over
a large Mach number range. The hybrid code is simple, robust, and only requires the user to modify the gas
properties and free-stream conditions before each simulation.
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